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CENTRALIZED
MACHINE
LEARNING
PROBLEMS

HUGE PROBLEM FOR
CANCER PATIENT DATA
ANALYSIS
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Connectivity - data must be transmitted over a stable
connection

Architecture - requires high computational power
central server and big-data system support

Dataset limit - eventually hit the limit of dataset
provoking decrease in information value

Privacy - sensitive operational data must remain on

site
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1) Distribute global 2) Train with local 3) Send local 4) Aggregate local
model data models to server models

Repeat Until Training Complete
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FEDERATED
LEARNING

* PARAMETER SERVER
* COLLABORATORS
* AGGREGATOR
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“Instead bringing data to the model, we take
model out to the data” ,unknown Google

FEDERATED LEARNING [Fﬂngineer @

Machine learning technique that trains an algorithm
across multiple decentralized edge devices or servers
holding local data samples, without exchanging them.
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FEDERATED
LEARNING
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Federated Workflow

Instead of data moving to a central place,
machine learning models move to the
data for training, then recombine to
create a global model.
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FEDERATED
LEARNING

CHALLENGES AND
CONSIDERATIONS
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Data heterogeneity - qualitative vs. quantitative

 Variety of modalities, dimensionality and characteristics
e Acquisition differences

* Global optimal solution may not be optimal for an
individual local participant

» “Data poisoning”
e Extraction attacks - recover training data from model




Data heterogeneity

FEDERATED
LEARNING * Proposed usage of homogenous ENCR dataset

e Corelation matrix analysis for quantitative data
e Contingency table analysis for qualitative data
* Analysis of different ML algorithms

* Homomorphic encryption or PKI
* IntelFL framework integration with SGX technology
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Rggregator] \ 1. Install OpenFL in a Python environment
Model Owner

on all machines in the federation

Node 3

orkspace

9\\ 2. Create FL workspace on aggregator
i machine

3. Move workspace to the other machines
in the federation

4. Make sure everyone has their own valid
PKI certificate

Plan Code

Collaborator B

RUNNING THE FEDERATED USING INTEL OPENFL
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Require: num_federated_rounds T

procedure AGGREGATING

Initialise global model: W

fort —1:.--Tdo

forclientk — 1 --- Kdo © Run in parallel

Send W~ D to client k

FEDERATED
LEARNING

Receive model updates and number of local training
iterations (AW® ™ V. Nk) from client’s local training with L, (Xk; W¢ ™ D)

~

end for

s: WO - 4 1

(t—-1)
ZkaZk(Nk'Wk )

9: end for
10: return W®
11: end procedure

ALGORITHM

FL algorithm via Hub & Spoke (Centralised topology) with FedAvg aggregation.
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THANK YOU FOR YOUR ATTENTION

QUESTIONS?




